

Ecological safety in water reuse – precautionary principles and feasible measures

Xiaochang Wang

- IWA Distinguished Fellow
- Director, State International S&T Cooperation Center for Urban Alternative Water Resources Development
- Professor, Xi'an University of Architecture & Technology, Xi'an, China

Outline

- Background
- Pollutants in reclaimed water and associated hazards
- Safety evaluation methods for reclaimed water quality
- Bio-toxic characteristics of residual organics
- Biotoxicity reduction by ecological processes
- Consideration on precautionary principle and feasible measures
- Concluding remarks

Background

Worldwide water scarcity is the driver for water reuse

Background

Urban wastewater treatment and reuse in China

Background

Urban wastewater treatment and reuse in China

Background

Water reuse in Beijing as an example

- Ecological reuse for replenishing urban lakes and rivers (streams) took more than 57%
- Agricultural irrigation took about 29%
- Municipal reuse including gardening, road cleaning and toilet flushing took about 20%
- Industrial reuse took about 9%

Background

Water reuse in Beijing as an example

Outline

- Background
- Pollutants in reclaimed water and associated hazards
- Safety evaluation methods for reclaimed water quality
- Bio-toxic characteristics of residual organics
- Biotoxicity reduction by ecological processes
- Consideration on precautionary principle and feasible measures
- Concluding remarks

Pollutants in reclaimed water and associated hazards

Pollutants		Examples	Main sources	Associated hazards	Related types of reuse
Bulk pollutants	Pathogens	Bacteria, Viruses	Domestic	Public health	Various reuse with possible human contact
	Nutrients	N, P	Domestic	Water eutrophication	Water body replenishment
Trace pollutants	Heavy metals	Cd, Hg, Ni, Pb etc.	Industrial	Public health/ Eco-toxicity	Various reuse with possible human contact/ Ecological reuse
	Organic chemicals	EDCs, POPs, PPCPs etc.	Industrial/ Domestic	Public health/ Eco-toxicity	Various reuse with possible human contact/ Ecological reuse

Pollutants in reclaimed water and associated hazards

Pollutants		Examples	Main source	Associated	Related types of reuse
Bulk pollutants	Pathogens Nutrients		-	aid to trac hemicals	e with possible ct eplenishment
Trace pollutants	Heavy metals	Cd, Hg, Pb etc.		Eco-toxicity	various reuse with possible human contact/ Ecological reuse
	Organic chemicals	EDCs, POPs, PPCPs etc.	Industrial/ Domestic	Public health/ Eco-toxicity	Various reuse with possible human contact/ Ecological reuse

Outline

- Background
- Pollutants in reclaimed water and associated hazards
- Safety evaluation methods for reclaimed water quality
- Bio-toxic characteristics of residual organics
- Biotoxicity reduction by ecological processes
- Consideration on precautionary principle and feasible measures
- Concluding remarks

Safety evaluation methods for reclaimed water quality

- Evaluation based on water quality standard
 - ✓ Standards referred: water reuse standard, surface water standard etc.
 - ✓ Method of evaluation: Standard-reaching rate

Safety evaluation methods for reclaimed water quality

- Evaluation based on water quality standard
 - Standards referred: water reuse standard, surface water standard etc.
 - ✓ Method of evaluation: Standard-reaching rate
- Evaluation based on biotoxicity
 - Biotoxicity: Damage to non-human organisms in ecosystem due to exogenous chemicals
 - Categories of biotoxicity: Phytotoxicity, animal toxicity, genotoxicity etc.

Safety evaluation methods for reclaimed water quality

Organisms in the aquatic ecosystem

Safety evaluation methods for reclaimed water quality

Safety evaluation methods for reclaimed water quality

Standardized/guided bioassays

Category 类别	Bioassays 生物毒性检测	180	OECD	China	USA	Japan	Germany	UK	
Acute toxicity 急性毒性	Alga growth inhibition test 藻类生长抑制试验								
	Flea inhibition/lethal test 最美运动抑制/致死试验								Standardized
	Fish acute toxicity test 鱼类急性毒性试验								Guided
	Luminescent bacteria test 发光细菌试验								Not standard and
	Germination/root growth test 发芽/根生长寿性试验								Not standardized Guided
Chronic toxicity 慢性毒性	Flea chronic toxicity test 蚤类慢性毒性(生命周期评价试验)								
	Fish chronic toxicity test 鱼类慢性毒性试验								
Genotoxicity 遺传毒性	Bacterial reverse mutation test 细菌回复实变试验								
	SOS/umu test 遺传毒性试验				1 1				
	Micronucleus test 微核试验	4							
Endocrine	Hybrid yeast method 双杂交酵母法								
interference 内分泌干扰性	Fish endocrine interference test 鱼类内分泌干扰性试验								

Safety evaluation methods for reclaimed water quality

Biotoxicity analyses/evaluation methods used in this study

Outline

- Background
- Pollutants in reclaimed water and associated hazards
- Safety evaluation methods for reclaimed water quality
- Bio-toxic characteristics of residual organics
- Biotoxicity reduction by ecological processes
- Consideration on precautionary principle and feasible measures
- Concluding remarks

Bio-toxic characteristics of residual organics

Dissolved organic matter (DOM)

3D fluorescence assay

FIR Region	Excitation (nm)	Emission (nm)	Characteristics	Фі.п (х10 ⁶ Au·пm ²)
Region I	220-250	280-380	Aromatic protein-like fluorophores	6.5
Region II	220-250	380-500	Fulvic acid-like fluorophores	5.9
Region III	250-400	280-380	Soluble microbial product-like fluorophores	6.0
Region IV	250-400	380-500	Humic acid-like fluorophores	4.8

Different fluorescence absorption characteristics for DOM from sewage and biological byproducts

Dissolved organic matter (DOM)

FTIR Analysis

Characteristic peaks 峰归属	Wave number 波数	Organic compounds 化合物来源
Sugar C-OH	3570-3050	Polysaccharides, cellulose 多糖类、纤维素
Antisymmetric methylene CH ₂	2925±5	Fats and lipids 脂肪和脂质类
Aliphatic COOH	2700-2500	Fatty acid 脂肪酸
Carbonyl amide C= O	1664	Amino compound, protein 氨基化合物、蛋白质
Phenolic hydroxyl C-O	1400	Phenolic compounds 酚类化合物
Aromatics COOH	1280-1150	Fulvic acid 富里酸
Sugar C-O	1100-1000	Polysaccharides 多糖类
Aromatic acid esters C-O-C	1050-1000	Humic acid 腐殖酸

Bio-toxic characteristics of residual organics

MW fractionation of DOM and corresponding non-specific toxicity

The biotoxicity for DOM with MW > 1k appeared much higher than their percent of MW fractionation

MW fractionation of DOM and corresponding non-specific toxicity

Bio-toxic characteristics of residual organics

Trace organic pollutants in WWTP effluent

Categories	Example	References
Nonpolar compounds- Hydrocarbons	Linear alkylbenzenes C10-C14, petroleum- derived hydrocarbons, etc.	Smital et al. 2011
Medium-polar compounds	Coumarine, indole, etc.	Smital et al. 2011
Surfactants	Alkylphenol polyethoxylates, linear alkylbenzene sulfonates, etc.	Smital et al. 2011
Phenols	phenol, 2-cresol, 3-cresol, 2-chlorophenols, etc.	Zhong et al. 2018
EDCs	17-β-estradiol, estrone, ethinyl estradiol, etc.	Sun et al. 2013; Tang et al. 2014
PPCPs	Caffeine, gemfibrozil, propyphenazone, octocrylene, tonalide, triclosan, etc.	Yoon et al. 2010; Cabeza et al. 2012; Tang et al. 2014
Dioxins	2,3,7,8-Tetrachloro-dibenzo-p-dioxin, etc.	Cabeza et al. 2012
PAHs	Anthracene, naphthalene, pyrene, etc.	Estévez et al. 2012; Ratola et al. 2012
POPs	Dichlorodiphenyltrichloroethane, hexachlorocyclohexanes, etc.	Zhang et al. 2013; Sharma et al. 2014
Pesticides	Atrazine, simazine, terbutryn, etc.	Ratola et al. 2012; Tang et al. 2014
Disinfection by-product	Bromodichloromethane, bromoform, etc.	Leusch et al. 2014
Volatile organic compounds	Hepta-brominated diphenyl ether, 1,2,3- trichlorobenzene, etc.	Estévez et al. 2012; Rodriguez et al. 2012
Flame retardants	Trichloroethyl phosphate, Trichloropropyl phosphate, etc.	Cabeza et al. 2012; Estévez et al. 2012
x-ray contrast media	Diatrizoic acid, lopromide, etc.	Tang et al. 2014
Priority substances	Tributylphosphate	Cabeza et al. 2012; Leusch et al. 2014b

- ✓ From domestic, industrial and agricultural sources
- ✓ Mostly as biorefractory organic compounds

Micropollutant removal by conventional treatment

IN: Influent; AGE: Screened; PSE: Primarily settled; SSE: Secondarily settled; UV: UV disinfected

Bio-toxic characteristics of residual organics

Micropollutant removal by conventional treatment

IN: Influent; AGE: Screened; PSE: Primarily settled; SSE: Secondarily settled; UV: UV disinfected

Biotoxicity reduction by conventional treatment

IN: Influent; AGE: Screened; PSE: Primarily settled; SSE: Secondarily settled; UV: UV disinfected

Bio-toxic characteristics of residual organics

Micropollutant removal by advanced treatment

Comparison of four treatment processes

Micropollutant removal by advanced treatment

Bio-toxic characteristics of residual organics

Biotoxicity reduction by advanced treatment

Bio-toxic characteristics of residual organics

Biotoxicity reduction by advanced treatment

Bio-toxic characteristics of residual organics

Biotoxicity reduction by advanced treatment

Bio-toxic characteristics of residual organics

Biotoxicity reduction by advanced treatment

Bio-toxic characteristics of residual organics

Results

comparison

Evaluation of biotoxicity reduction efficiency

	1000		The state of the s		
Treatment process	Assessment method	Biouminescece inhibition	Genotoxicity	Photosynthesis inhibition	
Consulation	EQS-EBT	Unacceptable	Unacceptable		
Coagulation	HC5-EBT	Unacceptable	Unacceptable		
CACadamatica	EQS-EBT	≥20g/L GAC	≥20g/L GAC	_	
GAC adsorption	HC5-EBT	≥20g/L GAC	≥20g/L GAC		
IN I I I	EQS-EBT	Unacceptable	Unacceptable	≥0.5h UV	
UV photolysis	HC5-EBT	Unacceptable	Unacceptable	_	
1107 - 1 - 4 4 - 1 - 4 - 1 4	EQS-EBT	Unacceptable	4h UV	≥0.5h UV	
UV photocatalysis-low	HC5-EBT	Unacceptable	≥2h UV		
UV photocatalysis-	EQS-EBT	Unacceptable	2h UV	≥0.5 h UV	
high	HC5-EBT	8 h UV	2h UV		
On the state of th	EQS-EBT	≥0.71 gO ₃ /gDOC	≥0.34 gO ₃ /gDOC	_	
Ozonation	HC5-EBT	≥0.34 gO ₃ /gDOC	≥0.34 gO ₃ /gDOC		

Non-specific -

		Non-	-specific —	Specific	compari	
Treatment process	Assessment method	Biouminescece inhibition	Genotoxicity	Photosynthe inhibition		
Coomleties	EQS-EBT	Unacceptable	Unacceptable	No.	effect	
Coagulation	HC5-EBT	Unacceptable	Unacceptable		effect	
a la distribuição	EQS-EBT	≥20g/L GAC	≥20g/L GAC		Remarkable effect	
GAC adsorption	HC5-EBT	≥20g/L GAC	≥20g/L GAC	Rei		
IIV - I - t - I t -	EQS-EBT	Unacceptable	Unacceptable	≥0.5h UV		
UV photolysis	HC5-EBT	Unacceptable	Unacceptable			
IIV at atomatation to the	EQS-EBT	Unacceptable	4h UV	≥0.5h UV	_ Effective but	
UV photocatalysis-low	HC5-EBT	Unacceptable	≥2h UV	_	uncertain	
UV photocatalysis-	EQS-EBT	Unacceptable	2h UV	≥0.5 h UV	ancer (ann	
high	HC5-EBT	8 h UV	2h UV			
0	EQS-EBT	≥0.71 gO ₃ /gDOC	≥0.34 gO ₃ /gDOC	— Per	narkable effect	
Ozonation	HC5-EBT	≥0.34 gO ₃ /gDOC	≥0.34 gO ₃ /gDOC		шагкарте епест	

Outline

- Background
- Pollutants in reclaimed water and associated hazards
- Safety evaluation methods for reclaimed water quality
- Bio-toxic characteristics of residual organics
- Biotoxicity reduction by ecological processes
- Consideration on precautionary principle and feasible measures
- Concluding remarks

Ecological processes for effluent treatment

Biotoxicity reduction by ecological processes

Micropollutant removal and biotoxicity reduction by shallow water unit

System

Shallow flowing water (Depth < 0.4 m)

Main actions

- ✓ Natural UV photolysis
- Other physicochemical/ecological actions

Micropollutant removal and biotoxicity reduction by constructed wetland

- Surface flow wetland achieved removals of EDCs(68%), pharmaceuticals (55%) and agricultural chemicals (43-82%)
- Remarkable reductions of acute toxicity (50%) and genotoxicity (>95%) were achieved

Biotoxicity reduction by ecological processes

 Micropollutant removal and biotoxicity reduction in a landscape lake system

 Micropollutant removal and biotoxicity reduction in a landscape lake system

Biotoxicity reduction by ecological processes

 Micropollutant removal and biotoxicity reduction in a landscape lake system

 Micropollutant removal and biotoxicity reduction in a landscape lake system

- ✓ By luminescent hacteria

 Reclaimed water: High TEQ

 Lake water: Remarkable TEQ reduction
- ✓ Genotoxicity Reclaimed water: TEQ about 5 Lake water: TEQ reduced to less than 0.5
- ✓ By alga test
 Reclaimed water: Toxic effect about 40%
 Lake water: Toxic effect < 20%
- ✓ By larva zebrafish test

 Reclaimed water: Toxic effect about 30%

 Lake water: No apparent toxic effect < 20%
 </p>

Biotoxicity reduction by ecological processes

 Micropollutant removal and biotoxicity reduction in a landscape lake system

- ✓ By luminescent bacteria

 Reclaimed water: High TEQ

 Lake water: Remarkable TEQ reduction
- ✓ Genotoxicity
 Reclaimed water: TEQ about 5
 Lake water: TEO reduced to less than 0.5
- ✓ By alga test
 Reclaimed water: Toxic effect about 40%
 Lake water: Toxic effect < 20%
- By larva zebrafish test Reclaimed water: Toxic effect about 30% Lake water: No apparent toxic effect < 20%</p>

Outline

- Background
- Pollutants in reclaimed water and associated hazards
- Safety evaluation methods for reclaimed water quality
- Bio-toxic characteristics of residual organics
- Biotoxicity reduction by ecological processes
- Consideration on precautionary principle and feasible measures
- Concluding remarks

Consideration on precautionary principle and feasible measures

Consideration on precautionary principle and feasible measures

Consideration on precautionary principle and feasible measures

Outline

- Background
- Pollutants in reclaimed water and associated hazards
- Safety evaluation methods for reclaimed water quality
- Bio-toxic characteristics of residual organics
- Biotoxicity reduction by ecological processes
- Consideration on precautionary principle and feasible measures
- Concluding remarks

Concluding remarks

 Trace organic chemicals and their associated ecotoxicity are drawing wide attention in ecological water reuse

Concluding remarks

- Trace organic chemicals and their associated ecotoxicity are drawing wide attention in ecological water reuse
- Ecotoxicity analysis and evaluation become more and more important to assist safety control in water reuse

Concluding remarks

- Trace organic chemicals and their associated ecotoxicity are drawing wide attention in ecological water reuse
- Ecotoxicity analysis and evaluation become more and more important to assist safety control in water reuse
- Advanced treatment by ozonation and/or PAC adsorption are most efficient for biotoxicity reduction

Concluding remarks

- Trace organic chemicals and their associated ecotoxicity are drawing wide attention in ecological water reuse
- Ecotoxicity analysis and evaluation become more and more important to assist safety control in water reuse
- Advanced treatment by ozonation and/or PAC adsorption are most efficient for biotoxicity reduction
- Biotoxicity can also be effectively reduced by ecological processes such as wetlands and open storage

Concluding remarks

- Trace organic chemicals and their associated ecotoxicity are drawing wide attention in ecological water reuse
- Ecotoxicity analysis and evaluation become more and more important to assist safety control in water reuse
- Advanced treatment by ozonation and/or PAC adsorption are most efficient for biotoxicity reduction
- Biotoxicity can also be effectively reduced by ecological processes such as wetlands and open storage
- Setting engineering and ecological barriers is recommendable for safety control in water reuse

Acknowledgement

Thanks to my colleagues' contribution to this work!

Dr. Xiaoyan Ma

Dr. Yucong Zheng

Mr. Yongkun Wang

