RECWET SEMINAR

Part 4

Analytical Tools- SWAT, DSSAT, WEAP Models and DSS Platform: *Application and Some Results*

1) Land Use and Climate Change Impact on Hydrology and Erosion Hazard in Abuan Watershed of Cagayan River Basin using SWAT Model

Model Parameters and Prediction of Streamflow

fppt.com

Simulated Hydrological Processes

PARAMETERS	AMOUNT (mm)	PERCENT OF RAINFALL
Rainfall	2169.1	
Surface Runoff	1233.9	56.9
Shallow Groundwater Recharge	9.46	0.4
Deep Aquifer Recharge	1.23	0.1
Total Aquifer Recharge	61.41	2.8
Total Water Yield (Streamflow)	1520.47	70.1
Percolation	61.46	2.8
Potential Evapotranspiration	934.3	43.1
Evapotranspiration	597.8	27.6

Annual Water Balance in Abuan Watershed

Average monthly values and sediment yield in tons/ha

37 fppt.com

Simulation of Hydrologic Impacts of Land use and Climatic Change Scenarios

Parameters	Amount mm 2169 10	Percent of Rainfall	Amount mm	Percent of Rainfall	Amount mm	Percent of	Amount mm	Percent of
	2169 10					Rainfall		Rainfall
Rainfall			2238.00		2238.00		2238.00	
Surface Runoff	1233.90	56.89	1296.75	57.94	1299.62	57.94	1230.79	57.94
Shallow Groundwater Recharge	9.46	0.44	10.74	0.48	10.74	0.48	10.74	0.48
Deep Aquifer Recharge	1.23	0.06	1.31	0.06	1.31	0.06	1.31	0.06
Total Aquifer Recharge	61.41	2.83	65.64	2.93	65.37	2.92	65.51	2.93
Total Water Yield (Streamflow)	1520.47	70.10	1588.29	70.97	1588.21	70.97	1588.32	70.97
Percolation	61.46	2.83	65.72	2.94	65.47	2.93	65.60	2.93
Potential Evapotranspiration	934.30	43.07	934.30	41.75	934.30	41.75	934.30	41.75
Evapotranspiration	597.80	27.56	596.00	26.63	596.30	26.64	596.00	26.64
Simula	ited annua	al water ba	lance of th	ne different	t scenarios	in Abuan w	vatershed	38

Simulation of Hydrologic Impacts of Land-use and Climatic Change Scenarios

		Baseline			2050			% Increase		
	Surface	Water Yield,	Sediment	Surface	Water Yield,	Sediment	Surface	Water	Sediment	
MONTH	Runoff, mm	mm	Yield, tons/ha	Runoff, mm	mm	Yield,	Runoff, mm	Yield, mm	Yield,	
						tons/ha			tons/ha	
January	35.16	47.44	1.03	48.64	62.96	1.45	38	33	41	
February	22.53	32.85	0.56	32.37	44.44	0.84	44	。 35	50	
March	21.83	30.84	0.34	12.43	19.84	0.18	-43	-36	-47	
April	30.75	41.80	0.33	17.70	26.53	0.18	-42	-37	-45	
Мау	103.49	130.84	0.93	59.44	82.07	0.51	-43	-37	-45	
June	85.95	109.10	0.35	94.73	119.44	0.40	10	9	14	
July	107.17	136.44	0.59	120.01	151.29	0.67	12	11	14	
August	131.15	161.49	1.73	147.54	179.43	2.01	12	11	16	
September	137.38	169.82	2.40	141.10	173.87	2.53	3	2	5	
October	175.41	209.01	3.30	179.75	213.63	3.44	2	2	4	
November	216.46	253.19	4.22	221.55	258.55	4.39	2	2	4	
December	167.19	198.48	3.80	222.33	257.37	5.20	33	30	37	
TOTAL	1234.47	1521.30	19.58	1297.59	1589.42	21.80	5	4	11	

Simulated monthly baseline and 2050 percent increase of surface runoff and water yield in Abuan watershed

39 fopt.com

Simulation of Hydrologic Impacts of Land use and Climatic Change Scenarios to Sediment Yield

S3 results to significant reduction of erosion in 2050 by 6%, 21.3% and 24.6% against baseline, scenario1 and scenario2, respectively from July-Dec

Simulated baseline sediment yield and across scenarios.

40 foot.com

2) Water Security in Cagayan River Basin: Assesment of Impact of Climate and Socio-

Economic Changes using WEAP Model

<u>Objectives</u>

1.Establish a benchmark of existing water use, water balance, water technologies use, water policies and governance in the basin;

2.Assess future water resources and demands considering socio-economic, technological and climate changes using the WEAP model;

3.Develop a water security index as tools for planning and policy decision making.

WEAP Highlights

- Integrated water resources planning system
- GIS-based, graphical drag and drop interface
- Basic Methodology: physical simulation of demands and supplies
- Scenario management capabilities
- Dynamic links to spreadsheets & other models

42

Expected Output

- Water use benchmarks and inventory of water users, existing policies, water balance, water quality and productivity, future development plans;
- Developed local WEAP model for analysis of present and future water resources and demands considering socio-economic, technological and climate changes;
- A water security index as tools for planning and policy decision making (i.e water availability, productivity, hazards, governance, watershed health);

Some Results: The Magat WEAP Schematic

Simulation of Future Scenarios

- Changes in water/ irrigation technologies
- Changes in agriculture development
- Changes in climate
- Changes in domestic and industrial demand
- Increase in population and water use per capita
- Expansion/Modernization of infrastructure for water supply system

Impact of Climate Change on Corn Yields and Adaptation Options

the second se		Charl Brind	T
Baseline (1987-2014)		Value	
Growing days, d		110	Pile .
Tx, mm		125	A.
Wet yield, tons/ha		6.78	X
Dry yield, tons/ha	1.5	7.711	-
Mean yield, tons/ha		7.25	
2050s	Best Case, RCP2.6	Worst Case, RCP8.5 IDDIGATED	7
	% change	% change	th.
Growing days, d	103 -7%	101 -8%	
Tx, mm	183 46%	175 40%	
Wet yield, tons/ha	6.06 -11%	5.96-12%	
Dry yield, tons/ha	3.47 -55%	2.64 -66%	
Mean yield, tons/ha	4.77 -34%	4.30-41%	
% mean yield loss/deg	-25%	-23%	
Oct 15 planting date, yield	6.94 -10%	6.24 -19% Deuncod	
With irrigation, yield	7.60 -1%	7.27 -6% Forntea	51

٥	0		Variety	Yield (kg/ha
IN YIEL	-5 -10 —		AG9010 (Rainfe	d) 8,618
NGE	-15		DKB 333B(Rainf	ed) 9,448
) СНА	-20		DAS CO32(Rainf	ed) 9,340
г (%	-25		EXCELER (Rainfe	ed) 9,725
CEN	-30			
~	05			
B	-35			
PE	-35 -40			
H	-35 -40 -45 ┌─			
Here and the second sec	-35 -40 -45	1° increase	1.5° increase	2° increase
₩ —AG9010- Ra	-35 -40 -45 ainfed	1° increase -27.65	1.5° increase -30.05	2° increase -31.92
₩ ——AG9010- Ra ——DKB 333B -	-35 -40 -45 ainfed Rainfed	1° increase -27.65 -35.65	1.5° increase -30.05 -36.62	2° increase -31.92 -40.03
₩ — AG9010- Ra — DKB 333B - — DAS CO32 -	-35 -40 -45 ainfed Rainfed - Rainfed	1° increase -27.65 -35.65 -34.28	1.5° increase -30.05 -36.62 -35.62	2° increase -31.92 -40.03 -38.4

Productivity Mapping of Groundnut in Cagayan River Basin using DSSAT for Dry and Wet Season

