N₂O Dynamics of N-transforming microbial communities: from mechanistic insights to full-scale process control

Barth F. Smets

JSPS Invitational Fellow, RECWET, Department of Urban Engineering, University of Tokyo Professor, METLab, Department of Environmental Engineering, Technical University of Denmark

Abstract

Nitrous oxide (N₂O) is a strong greenhouse gas and ozone depleter, with a warming potential 300 times higher than that of CO₂. Anthropogenic N₂O emissions accounts for 6% of the total greenhouse gas emissions and 3% of the total N₂O emissions are thought to originate from the wastewater treatment (WWT) sector. Conventional biological nutrient removal processes relying on nitrification and denitrification are known produce N₂O. The Intergovernmental Panel on Climate Change (IPCC) still recommends an N₂O emission factor (EF) of 0.0032 kg N₂O-N person⁻¹ year⁻¹ or 0.035% of the influent nitrogen to estimate the N₂O emissions from domestic wastewater treatment plants (WWTP). However, full-scale N₂O measurement campaigns have revealed that emissions can range from less than 0.1 to more than 10% of the influent nitrogen load. Hence, there is a strong need to develop a more complete understanding of the mechanisms, magnitudes, and controlling factors of N₂O emissions from wastewater treatment operations – in order to develop more defensible N₂O emission factors and to identify mitigation approaches to reduce N₂O emissions.

I will present results of 5-year multidisciplinary and multi-institutional study that had the aim to improve the diagnostics, monitoring and mitigation of N₂O emissions from wastewater treatment operations. The overall outcomes of the project were (1) the applicaton of new plant-wide techniques for the quantification of both whole-plant and reactor-scale N2O emission factors, yielding emission factors of 0.1 to 5.2% of the nitrogen removed, (2) the development of assays based on ¹⁵N and ¹⁸O for N₂O source partitioning, which revealed that both hydroxylamine oxidation and nitrifier-denitrification are important pathways for N₂O production (3) the development and validation of new predictive models, both plantwide and biokinetic-based, to capture N₂O dynamics in wastewater operations (4) the identification and application of mitigation strategies to control N₂O emissions at full-scale (5) the filing of two patents describing two different control strategies for N2O emissions.