Achieving disinfection in engineered systems with minimal side effects

(Sathaa) Arumugam Sathasivan School of Engineering; Western Sydney University s.sathasivan@westernsydney.edu.au

Chloramine profile along the system

Monitor parameters associated with nitrification, study and research solely about nitrifiers and their control for the last 100 years!!

Problem of traditional method

- No quantification, no prediction and hence no warning!!
- Always do their best to control the food to near zero level (Cl2/NH3 ratio close to 4 – if we go more than that chlorine chemically disintegrate)!! OVER/UNDER REACTION ???

Is traditional approach right?

Water from filtration plant (all chemical decay)

Water from retic system (mild and severe)

Biostable residual concentration (BRC) concept?

- Disinfectant (Chlorine) tries to kill
 - Kill rate $\boldsymbol{\alpha}$ disinfectant concentration
 - →Kill rate r_d = k.Cl
- Growth rate, $r_g = \mu_m \frac{S}{Ks+S}$
- If r_g= r_d, bacterial number remains constant
- If r_g> r_d, bacterial number increases
- If r_g < r_d, bacterial number decreases
- A chlorine concentration at which r_g = r_d is called BRC

In a chloraminated system

• For nitrifiers, free ammonia is the substrate

$$\frac{\mu_{\rm m}(\text{free ammonia})}{(K_{\rm s} + \text{free ammonia})} = k_{\rm d} \times \text{BRC}$$

TCI>BRC killing TCI<BRC growth Sathasivan, Fisher, Tam (2008) Water research 42 (14), 3623-3632

 μ_m , k_d are functions of temperature

The model predicts the problems of growth

DC Sarker, A Sathasivan, CA Joll, A Heitz Science of the Total Environment 454, 88-98

Reactors simulating various phases

Initially NOx production correlates

Bal Krishna et al., 2013

WESTERN SYDNEY UNIVERSITY

Bacterial Community Composition: Loose deposit & Biofilm

Actual situation is much more complex

Sathasivan et al., 2016 :

Some interesting facts about SMP

- They are proteins of molecular weight 30-50 KDa
- They catalyse the disinfectant decay

BS Herath, A Torres, A Sathasivan (2018) Chemosphere 212, 744-754 KCB Krishna, A Sathasivan, DC Sarker (2012)Water research 46 (13), 3977-3988

CDPs are formed as a stress response

Things at play in a service reservoir

Fig. 1 – Conceptual representation of factors affecting chloramine residual. X is the bacterial number and subscripts b, w, s and se represented bulk water, biofilm (wall), stratification and sediment, respectively.

A Sathasivan, KCB Krishna, I Fisher Water research 44 (15), 4463-4472

Chlorination

• 2R model - Fast reacting and slow reacting agents (Fisher et al., 2016; 2017)

•
$$\frac{dCl}{dt} = (k_f.FRA + k_s.SRA).Cl$$

•
$$k_T = k_{20} \cdot \exp\left(-\frac{E}{R} \cdot \left(\frac{1}{273+T} - \frac{1}{293}\right)\right)$$

• Analytical solution (Kohpae and Sathasivan, 2011)

$$C_{cl}(t) = \frac{C_{cl_{FRA}}(t) - c}{1 - \frac{c}{C_{cl_{FRA}}(t)}e^{-(C_{cl_{FRA}}(t) - c)k_{SRA}t}}$$
(37)

Application With one set of parameters different dosing, • • different temperature, • rechlorination (A) ³ (B)3 - GV 4mg/L 20C · GV4020 model GV 2mg/L 25C GV2025 model GV 3mg/L 20C • GV3020 model - - GV1525 model GV 2mg/L 20C · GV2020 model GV 1.5mg/L 25C 2.5 25 GV 1.5mg/L 20C - GV1520 model GV 2mg/L 15C - • GV2015 model GV 1mg/L 20C GV1020 model GV 1.5mg/L 15C - - GV1515 model GV 1.5mg/L 20C R25 GV1520 R25 model 2 free chlorine (mg/L) free chlorine (mg/L) GV 1.5mg/L 20C R47 GV1520 R47 model GV 1.5mg/L 25C R24 _____ GV1525 25C R24 model 1.5 1.5 1 0.5 0.5 0 0 -10 140 240 290 340 90 190 -10 40 90 140 190 240 290 340 time (h) time (h) I Fisher, G Kastl, A Sathasivan Urban Water Journal 14 (4), 361-368

Can apply for successive rechlorination

Figure 2. Chlorine concentrations from 2R model of Harsh Lake 2 water, calibrated against data set comprising a single ID and successive rechlorinations to 3 mg/L after 24, 48 and 411h (data from Boccelli *et al.* 2003). Markers, curves and legend are as defined in Figure 1.

I Fisher, G Kastl, A Sathasivan Urban Water Journal 14 (4), 361-368

Can apply for bend of two sources

I Fisher, G Kastl, F Shang, A Sathasivan (2018) Journal American Water Works Association 110 (11) I Fisher, G Kastl, A Sathasivan, D Cook, L Seneverathne (2015) Journal of Environmental Engineering 141 (12), 04015039 I Fisher, G Kastl, A Sathasivan (2014) Water: Journal of the Australian Water Association 41 (8), 32

I Fisher, G Kastl, A Sathasivan Water research 125, 427-437

How about THM?

Sathasivan et al., 2019; NOM 7 conference proceedings

This implies that if we know what chlorine we dosed and the concentration at a given point (predicted or measured), we can calculate the TTHM confidently

Sathasivan et al., 2019; NOM 7 conference proceedings

Comparison

Raw water or treatment details	DOC (mg/L)	UV ₂₅₄ (/cm)	SUVA	Br (µg/L)	рН	Cl ₂ dose mg-Cl ₂ /L	TTHM mass yield (mg THM /mg-Cl ₂ consumed) (R ²)	TTHM molar yield (µmol THM /mmol Cl ₂ consumed) (R ²)
Nepean , Aus	5.44	0.0828	1.52	43	7.4	5.9	45.0 (0.997)	25.9(0.997)
Wyong, Aus	8.99	0.3154	3.51	187-159	7.3	6.9	40.9(0.980)	22.5(0.976)
Petrie, Aus	9.88	0.3408	3.45	48	7.3	8.3	43.7 (0.999)	25.4 (0.999)
North Pine, Aus	6.58	0.1418	2.15	81	7.6	4.9	45.0 (0.963)	25.0 (0.964)
Lake Gaillard WTP, USA ¹	1.91	0.03	1.57	30-50	7.3	2.5 4.0	28.8 (0.988) 29.6 (0.982)	15.9 (0.964) 16.2 (0.97)
Lime softened Lake Gailard(?) ¹	-	-	-	30-50 (?) +100	7.5	2.5	44.7 (0.992)	16.5 (0.990)

¹McClellan, 2000 PhD Thesis

Gallard & Gunten, 2002 - molar yield 19.6±4.9 μ M TTHM/mM of Cl₂ reacted R²>0.92 in eight different raw water samples with SUVA 0.6-2.1

Sathasivan et al., 2019; NOM 7 conference proceedings

Molar fractions

$$n_{CHCl_3} = \frac{C_{CHCl_3}}{MW_{CHCl_3}}$$

 $n_T = n_{CHCl_3} + n_{CHCl_2Br} + n_{CHClBr_2} + n_{CHBr_3}$

$$f_{CHCl_3} = \frac{n_{CHCl_3}}{n_T}$$

Sathasivan et al., 2019; NOM 7 conference proceedings

Molar fractions of THM species in low Br waters

Sathasivan et al., 2019; NOM 7 conference proceedings

Molar fraction of THM species in high Br waters

DOC = 2.22 mg/L; 159 μg-Br/L Lime softened water, US DOC ?, >100 μg-Br/L McClellan, 2000 PhD Thesis

Sathasivan et al., 2019; NOM 7 conference proceedings

WSU Water Group

Model of THM species

- Now chlorine decay can be described for a given water
- Yield (mass as well as molar) remains relatively constant
- Molar (mass) fraction of each species remains relatively constant for ret time, t > 24 h in raw waters
- In treated water, constancy t > 4 h

 $\frac{dTTHM}{dt} = \alpha_{mass}(k_f.FRA + k_s.SRA).Cl$ $\frac{dC_{CHCl_3}}{dt} = \alpha_{mol}.f_{CHCl_3}(k_f.FRA + k_s.SRA).Cl.MW_{CHCl_3}$ Or simply

$$C_{CHCl_3} = \alpha_{mol}. (Cl_o - Cl_t). f_{CHCl_3}. MW_{CHCl_3}$$

Sathasivan et al., 2019; NOM 7 conference proceedings

Model agreement, our data

Sathasivan et al., 2019; NOM 7 conference proceedings

Model agreement, US lime softened water¹

Error in prediction

DOC = 2.22 mg/L; 159 μg-Br/L Lime softened water, US DOC ?, >100 μg-Br/L McClellan, 2000 PhD Thesis

Comparison of best models with the developed model

	Standard error of best models (µg/L)	Max error, raw water t>24 h (μg/L)	Max error Lime softened water, t > 0h
CHCl ₃	14.4	<2	<2
CHCl ₂ Br	8.7	<2	<2
CHBr ₃	4.1	<2	<2
CHClBr ₂	>35	<2	<2
TTHM	68.8 – 76.8	<5	<5

Yield & fixed molar fraction approach minimizes the error to below measurement error.

Sathasivan et al., 2019; NOM 7 conference proceedings; Water Research under reviewsu Water Group

BAC/Coagulation

Shashika Krotta Gamage (2019) PhD Thesis

Is DOC good predictor of chlorine decay?

Shashika Krotta Gamage (2019) PhD Thesis

Thank you

Any questions??

