湖沼・河川の水質形成過程 を理解するための新たな視点

- 1. 湖沼における藻類産生有機物の動態
- 2. 河川における有機物分子組成の変遷

東京大学工学系研究科都市工学専攻 水環境制御研究室 講師 春日郁朗

Copyright © 春日郁朗 All rights reserved.

水質形成過程を理解することの重要性

従来

その時、その場所の「結果」としての水質

処理、事故対応、予防措置が後手後手になりがち

本日の話題

どのようなプロセス・履歴を経て この水質は形成されたのか?

戦略的な流域管理、水源水質の監視、 処理条件の最適化、事故対応

- 生物学的な視点
- 化学的な視点

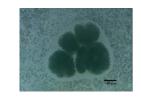
生物学的な視点

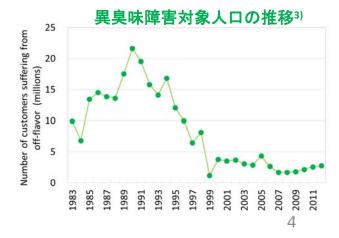
湖沼水質と藻類産生有機物の動態

科学研究費「湖沼における藻類産生有機物を起点とする微生物ループの構造解明の試み」 (H24-25)

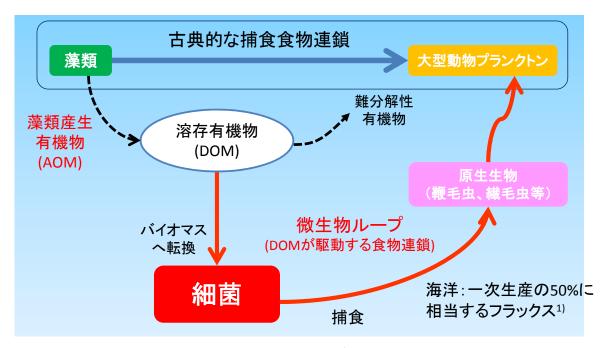
東京大学 春日郁朗、栗栖太、木戸佑樹、古米弘明

藻類産生有機物

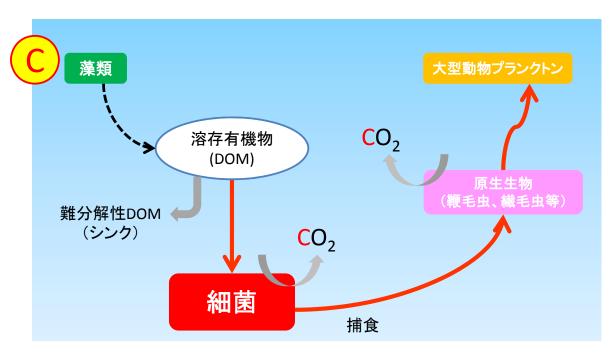

- 藻類産生有機物(Algal Organic Matter: AOM)とは?
 - 光合成によって藻類が生産する有機物
 - 細胞内に蓄積
 - 細胞外に溶存態として排出


<水道原水への影響>

- かび臭 (2-MIB, Geosmin)
- 凝集阻害
- ファウリング
- 消毒副生成物前駆物質
- シアノトキシン

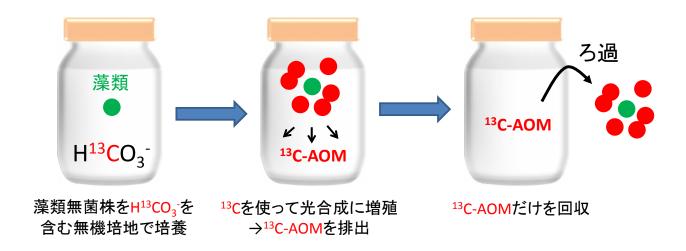

<湖沼水質への影響>

- 難分解性有機物への寄与
- 琵琶湖 7割1)、霞ヶ浦 2割2)


微生物ループ: DOMと生態系をつなぐパス

- 湖沼のDOM濃度・組成を規定する重要なプロセスでは?
- 誰がこのループを駆動しているのかは不明

1)永田ら, 2006


微生物ループを構成する微生物の同定作戦

藻類産生有機物に目印をつけ、炭素をトレースすればよい。

6

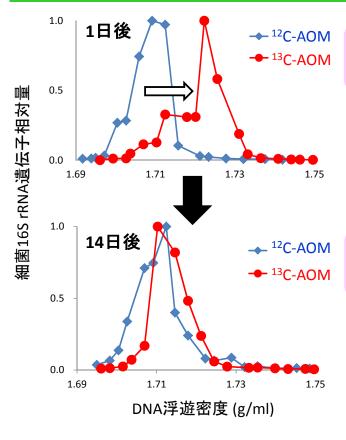
安定同位体¹³Cによって標識したAOMの調製

H¹²CO₃-を使って¹²C-AOMも同様に調製

DNA安定同位体プロービング(DNA-SIP) ¹²C-AOM ¹³C-AOM (対照系) 消費 消費 細菌群 捕食 捕食 原生生物 DNA抽出 DNA抽出 130 ¹²C-AOM 添加系 ¹³C-AOM 相対量 軽い 重い 添加系

DNAの比重

7


津久井湖における研究例

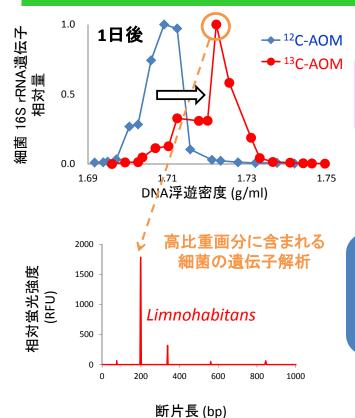
AOM

| AOM | A

AOMの添加→DOCと全菌数の変化 (12C-AOM添加系のデータ) ➤ 添加したAOMは4日後までに分 解され、その後緩やかに減少 0 5 10 0 15 10⁸ 全国数 (cells/ml) ➤ DOCの減少と共に全菌数が急速 に増加し、1日後に最大に達した が、以降急速に減少 10⁵ 原生生物に捕食? 0 10 15 10 培養時間(日)

細菌由来のDNAの比重分布

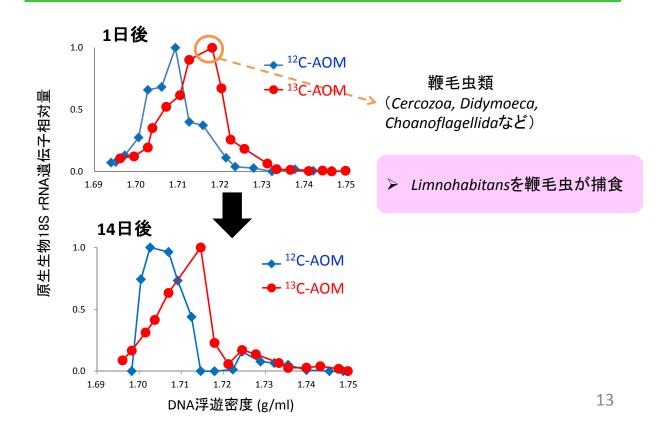
▶ 1日後に¹³C-AOM添加系でDNAの 比重分布が高比重側にシフト

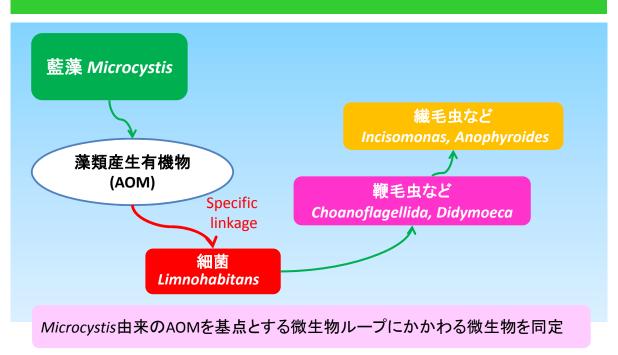

ある細菌が、¹³C-AOM由来の¹³Cを 利用して増殖した!

▶ 14日後では比重シフトが消失

¹³C-AOM由来の¹³Cを利用して増殖 した細菌が系内から消えた! →捕食?

11


1日後にAOMを利用した細菌の同定


Limnohabitans属とは?

- 世界各地の湖に生息する浮遊性細菌 (Kasalicky et al., 2013)
- AOMを利用できる(Simek et al., 2011)
- 高い増殖速度を持つ一方、鞭毛虫による捕食を受けやすい(Kasalicky et al., 2013)

Limnohabitansを捕食した原生生物の同定

本研究で明らかになった微生物ループの構造

Limnohabitansが藍藻AOMを特異的に利用

化学的な視点

分子レベルで見る溶存有機物の組成

JST 戦略的創造研究推進事業(CREST)「気候変動に適応した調和型都市圏水利用システムの開発」 (H21-26:古米弘明)

東京大学 水質評価グループ: 栗栖太、春日郁朗、浦井誠、古米弘明

溶存有機物(Dissolved Organic Matter: DOM)の理解

- DOMの中身は?
 - 水道水質基準 TOC: 3 mg/L
 - BOD? 有機物の組成については情報をもたない
 - -COD?

• 既知の有機物<<<未知の有機物

各種規制物質 (水道水質基準)

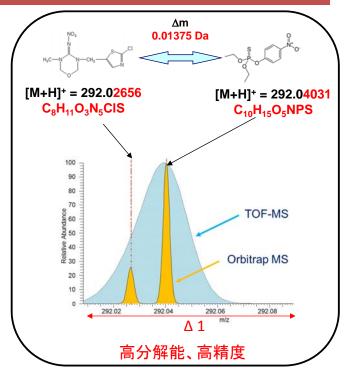
農薬

医薬品

自然由来・人為由来 (標準物質がないものも多い)

有機物組成を網羅的に解析(=分子を同定) →水質管理をアップグレード!

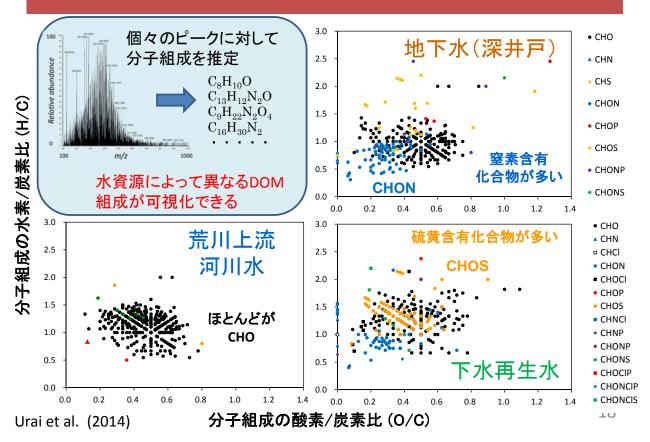
Orbitrap型フーリエ変換質量分析計(Orbitrap-FTMS)


精密質量分析が可能

例 精密質量=122.0744

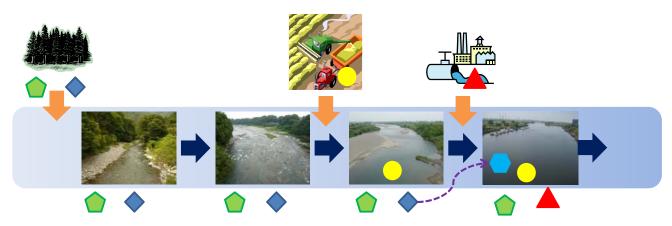
 $C_{\mathbf{x}}H_{\mathbf{y}}O_{\mathbf{z}}$

	整数質量	精密質量			
¹² C	12	12.00000			
¹ H	1	1.00783			
¹⁶ O	16	15.99491			



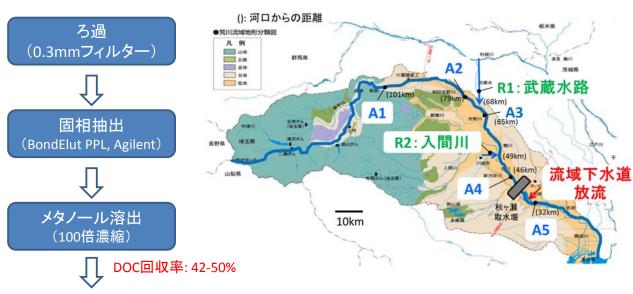
<u>未知物質であっても</u>、分子の元素組成を 推定できる(構造はわからない)

17


様々な水資源のDOM分子組成

荒川における研究例

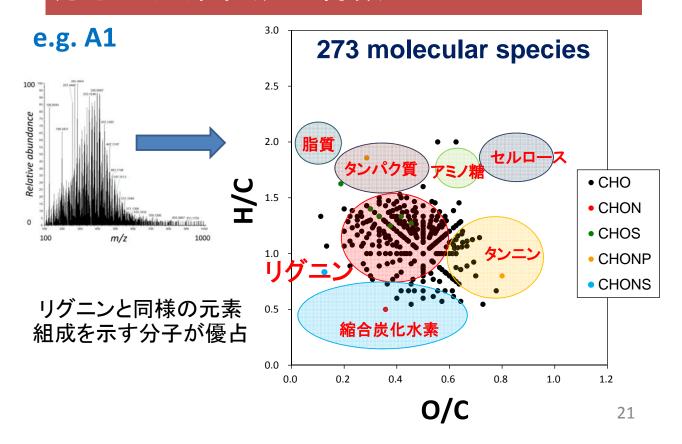
- 様々な起源に由来するDOMが河川に流入
- 流下に伴ってDOMの組成は変化=水質形成過程


Orbitrap-FTMSを用いて、荒川流下過程に おけるDOMの分子組成の変化を評価

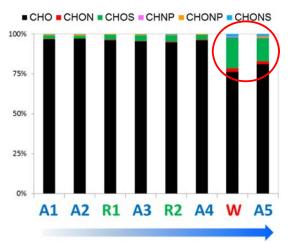
TOCでは把握できない分子組成の特徴=「水の履歴: Water CV」

19

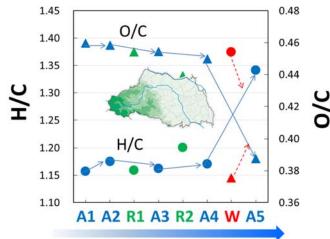
荒川におけるサンプリング(2012.7)



Orbitrap-FTMS

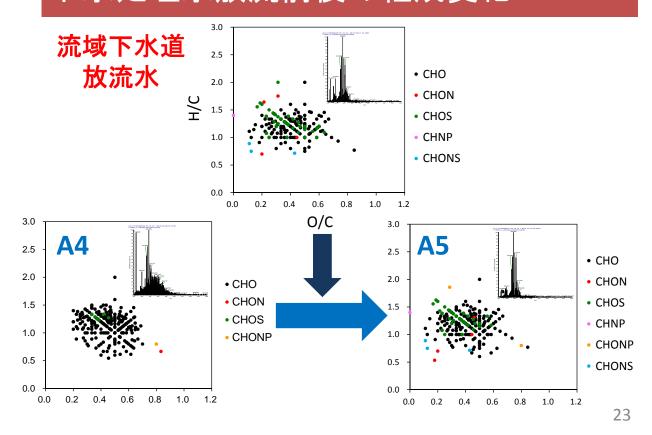

- ネガティブイオン化モード
- *m/z* range: 100∼1,000
- 分子式組成解析

各地点200~300種類の分子 式を推定することに成功

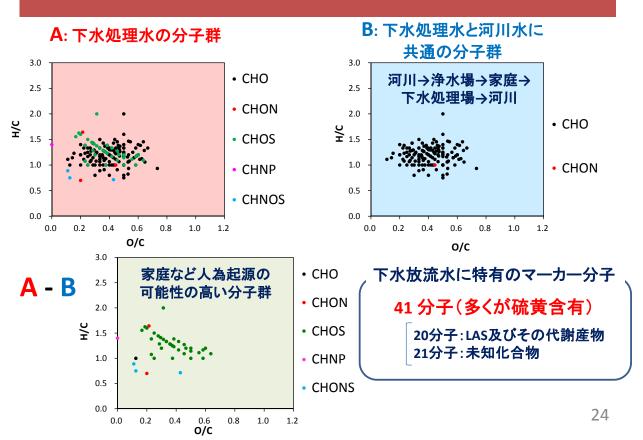

分子の元素組成の特徴

流下に伴う分子組成の変化

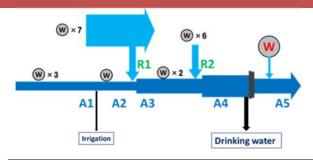
- 大半の分子がCHOのみから構成
- 下水処理水流入により、硫黄含 有分子が増える



下水処理水の流入により、河川 水中の有機物分子の平均元素 組成比が大きく変化


 $H/C \uparrow O/C \downarrow$

界面活性剤(アルキルフェノール、アルコールエトキシレート)の影響? 22


下水処理水放流前後の組成変化

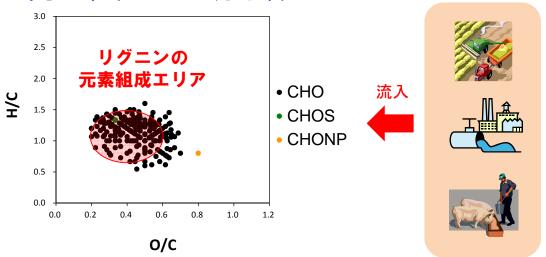
既知情報ゼロからの下水処理水マーカーの抽出

下水放流水マーカーの存在状況

流下に伴う下水放流水 の影響が明らかに

Linear alkyl benzene sulfonates (LAS) Sulfophenyl carboxylic acids (SPC) Dialkyl tetralin sulfonates (DATS) Dialkyl tetralin sulfonate intermediates (DATSI)

地点	下水放流水マーカー 検出分子数					ᄉᆋ	
	LAS	SPC	DATS	DATSI	その他	合計	
浦山ダム	0	0	0	0	0	0	
A1	3	2	0	0	0	5	
A2	2	2	0	0	0	4	
武蔵水路	2	2	0	3	0	7	
A3	3	3	0	3	0	9	
入間川	1	3	0	4	0	8	
A4	2	2	0	3	0	7 👍	
A5	5	5	5	10	9	34	


25

こんなこともできる: 荒川自然由来のDOMとは?

• 荒川河川水には存在し、下水処理水や流入河川水から は検出されない分子を抽出 →212分子

内210分子は、C, H, Oのみから構成 (リグニンと類似した元素組成)

荒川本来のDOM分子群

分子レベルでDOMを見ることの展開

• 未知物質による水道水源汚染への備え

- H24 江戸川ホルムアルデヒド事故

平常時の「水源DOM分子ライブラリ」の構築
→異常時の迅速なスクリーニングに活用

 $C_x H_v O_z$?

平常時

異常時

- 水質障害を引き起こす未知成分の同定・処理技術の最適化
 - 個別の水質障害に関連する成分を分子レベルで特定
 - [発生源対策] それらはどこから来ているのか、分子レベルでトレース?
 - [重要管理点の抽出] どの処理プロセスで除去・生成しているのか?
 - [処理条件のチューニング] 除去を最適化するための条件とは?

